

CA240144/E

CeramTec

Industrial Solutions CeramTec-Platz 1-9 73207 Plochingen, Germany

Telefon +49 (0) 7153.611-11900 Email myceramtec@ceramtec.de Web www.ceramtec-group.com

All images depicted in this document are owned by or licensed to CeramTec GmbH. The measured values mentioned before were determined for test samples and are applicable as standard values. The values were determined on the basis of DIN-/DIN-VDE standards and if these were not available, on the basis of CeramTec standards. The values indicated must not be transferred to arbitrary formats, components or parts featuring different surface qualities. They do not constitute a guarantee for certain properties. We expressly reserve the right to make technical changes.

Material Properties of Rubalit[®], Alunit[®], Zirkolit[®] and Sinalit[®]

Property	Definition Property	Unit	Range	Rubalit [®] 708 D**	Rubalit [®] 708S C ^{***}	Rubalit [®] 708 HP C***	Rubalit [®] 710F C***	Rubalit [®] ZTA***	Thomit [®] 600 D**	Alunit [®] AIN 170 C***	Alunit [®] AlN 170 D ^{**}	Alunit® AIN HP***	Sinalit [®] Si ₃ N ₄ *** Launch in 2024	Zirkolit® ZrO ₂ 5Y C***
Al ₂ O ₃ content		[wt-%]	≥	95.8	96.0	96.0	+/- 99.6	90 +/- 1.2	45.0					
Surface roughness R _a	@ as fired surface	[µm]	≤	0.8	0.6	0.6	0.12	0.4	0.9	0.6	1.0	0.4	0.4	0.2
Density		[g/m³]	≥	3.73	3.73	3.73	3.80	3.95		3.26	3.28	3.34	3.2	5.7
Bending strength DR sigma 0	@ double ring method	[MPa]	≥	300	450	450	420	625	130	320	200	450	700	800
Coefficient of thermal expansion (CTE)	@ 100°C - 200°C @ 100°C - 300°C @ 100°C - 600°C @ 100°C - 800°C	[10 ⁻⁶ /K] [10 ⁻⁶ /K] [10 ⁻⁶ /K] [10 ⁻⁶ /K]	+/ +/ +/		6.0 - 8.0 6.0 - 8.0 6.7 - 8.7 7.0 - 9.0	6.0 - 8.0 6.0 - 8.0 6.7 - 8.7 7.0 - 9.0	6.0 - 8.0 6.0 - 8.0 6.7 - 8.7 7.0 - 9.0	6.3 - 8.5 6.4 - 8.6 6.9 - 10.3	5.0 - 7.0 5.0 - 7.0 5.5 - 7.5 5.5 - 7.5	3.7 - 5.7 3.7 - 5.7 4.5 - 5.9 4.8 - 6.2	3.5 - 5.5 4.0 - 6.0 4.5 - 6.5 4.6 - 6.7	3.7 – 5.7 3.7 – 5.7 4.5 – 5.9 4.8 – 6.2	2.3 2.5 3.1 3.3	9 - 12 9 - 12 9 - 12 9 - 12 9 - 12
Dielectric constant (@ Ra ≤ 0.4 µm)	 @ 1 GHz @ 2mm thickness @ 10 MHz @ 2mm thickness @ 100 MHz @ 2mm thickness 	-/- -/- -/-	+/- +/- +/-	8.3 – 11.3 8.3 – 11.3 8.3 – 11.3	8.3 – 11.3 8.3 – 11.3 8.3 – 11.3	8.3 – 11.3 8.3 – 11.3 8.3 – 11.3	8.5 – 11.5 8.5 – 11.5 8.5 – 11.5	10.5 (@1 Mhz)		7.2 –9.8 7.2 –9.8 7.2 –9.8		8.5 (@1 MHz)	8.3 (@1 MHz)	
Dielectric loss factor (@ Ra ≤ 0.4 µm)	 @ 1 GHz @ 2mm thickness @ 10 MHz @ 2mm thickness @ 100 MHz @ 2mm thickness 	[10 ⁻³] [10 ⁻³] [10 ⁻³]	≤ ≤ ≤	10 10 10	10 10 10			5 (@1 MHz)		10 10 10		10 (@1 MHz)	3 (@1 MHz)	
Dielectric strength	@ thickness ≤ 1 mm	[kV/mm]	≥		15	15	15	25	15	15		15	25	10
Specific heat capacity	@ 100°C @ 20°C	[J/g*K] [J/g*K]	≥ ≥	0.9 0.7	0.7 0.7	0.8 0.7	0.8 0.7	0.7		0.7 0.6	0.7 0.6	0.7 0.6	0.7 0.6	0.4 0.3
Thermal conductivity*	@ 20°C @ Xe-flash @ sample $16*16 \text{ mm}^2$ @ material specific thickness $\leq 3.5 \text{ mm}$	[W/m*K]		22.0	22.0	22.0	25.0	26.0	2.0	170	170	170	80	1.5
Volume resistivity	@ 20°C @ 200°C @ 400°C @ 600°C @ 800°C	[Ohm*cm] [Ohm*cm] [Ohm*cm] [Ohm*cm] [Ohm*cm]	≥ ≥ ≥	10 ¹³ 10 ¹¹ 10 ⁹ 10 ⁷	10 ¹³ 10 ¹¹ 10 ⁹ 10 ⁷ 10 ⁷	10 ¹³ 10 ¹¹ 10 ⁹ 10 ⁷ 10 ⁷	10 ¹³ 10 ¹¹ 10 ⁹ 10 ⁷ 10 ⁷	10 ¹⁴		10 ¹⁴ 10 ¹³ 10 ¹² 10 ⁹ 10 ⁹	10 ¹⁴ 10 ¹³ 10 ¹² 10 ⁹	10 ¹⁴ 10 ¹¹ 10 ⁹ 10 ⁹ 10 ⁸	1014	
Chemical composition		-/-		The material main component is Al ₂ O ₃ . Remainer mainly consists of MgO, SiO ₂ and CaO and traces of other elements.	The material main component is Al ₂ O ₃ . Remainer mainly consists of MgO, SiO ₂ and CaO and traces of other elements.	The material main component is Al ₂ O ₃ . Remainer mainly consists of MgO, SiO ₂ and CaO and traces of other elements.	The material main component is Al ₂ O ₃ . Remainer mainly consists of MgO and traces of other elements.	The material main components are Al ₂ O ₃ and ZrO ₂ . Additional component is Y ₂ O ₃ . Remainer mainly consists of MgO, SiO ₂ and CaO and traces of other elements.	The material main components are Al_2O_3 and SiO_2 . Additional components are BaO and traces of other elements.	The material main component is AlN. Additional components are Y ₂ O ₃ and traces of other elements.	The material main component is AlN. Additional components are Y_2O_3 and traces of other elements.		The material main component is Si_3N_4 . Additional components are Y_2O_3 , MgO, ZrO ₂ , and traces of other elements.	The material main component is ZrO_2 . Additional components are Y_2O_3 and traces of other elements.

* typical value based on a measurement precision of +/- 10%

** Dry pressed

*** Tape casted

Indexes and parameters for ceramic substances

In order to profile ceramic substances certain parameters are indicated. The crystalline nature of these substances, statistical fluctuations in the composition of the substances and in the factors that impact on the production processes indicate that the figures quoted are typically mean values and hence the substance parameters quoted in this brochure are only standard, recommended or guide values that might differ given dissimilar dimensions and production processes.